112 MATHEMATICS

Clearly A=-A
Hence, Property 2 is verified.

Property 3 If any two rows (or columns) of a determinant are identical (all corresponding
elements are same), then value of determinant is zero.

Proof If we interchange the identical rows (or columns) of the determinant A, then A
does not change. However, by Property 2, it follows that A has changed its sign

Therefore A=—-A
or A=0

Let us verify the above property by an example.

3 23
Example 8 Evaluate A= |2 2 3
323

Solution Expanding along first row, we get
A=3(6-6-206-9+34-6)
=0-2(-3)+3(-2)=6-6=0
Here R, and R, are identical.

Property 4 If each element of a row (or a column) of a determinant is multiplied by a
constant k, then its value gets multiplied by k.

a b ¢
Verification Let A= |4, D, ¢,
a; by ¢

and A, be the determinant obtained by multiplying the elements of the first row by k.
Then
ka, kb kc
A=|% b, ¢
a; by o
Expanding along first row, we get
A =ka(b,c,-b,c)~kb (a,c,~c,a)+kc (a, b,—b,a,)
=kla, (b,c,~b,c)~-b (a,c,-c,a)+c (a,b,—b,a)l
=k A
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DETERMINANTS 113

ka, kb k¢ a b ¢
Hence a, b, ¢ |=kl|a, b, ¢
a; by a by

Remarks

(i) By this property, we can take out any common factor from any one row or any
one column of a given determinant.

(i) If corresponding elements of any two rows (or columns) of a determinant are
proportional (in the same ratio), then its value is zero. For example

a, a, a,

A=| b b, by |=0(rows R, and R, are proportional)

ka, ka, ka,
102 18 36

Example 9 Evaluate | 1 3 4
17 3 6

102 18 36| [6(17) 6(3) 6(6) 17 3 6
Solution Note that | 1 3 4(=]1 3 4 |=6|1 3 4|=0
17 3 6 17 3 6 17 3 6

(Using Properties 3 and 4)

Property 5 If some or all elements of a row or column of a determinant are expressed
as sum of two (or more) terms, then the determinant can be expressed as sum of two
(or more) determinants.

a+A a,+A, a;+ A, a a, ay| A A, A
For example, b, b, by | =|b by by|+|b b, b
G ) G G 6 G G 6 G

a+A a,+A, a;+A,
Verification L.HS. = | b b, b,

G (%) %]
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114 MATHEMATICS

Expanding the determinants along the first row, we get
A=(a, +L) (b,c,—c,b)—(a,+ L) (b c,—b,c)
+(a,+M\) (b, c,-b,c)
=a, (b,c,~c,b)~a, (b, c;,-b,c)+a, (b c,-b,c)
+A (byc,—c,b)—A, (byc;—b,c)+ A (b c,—b,c)
(by rearranging terms)

a a, a MoA A
=|b b, by|+|b b, by| =RHS.
G & G G G G

Similarly, we may verify Property 5 for other rows or columns.

a b c
Example 10 Show that |a +2x b+2y c¢+2z|=0
X y Z
a b c a b c a b ¢
Solution We have |a+2x b+2y c+2z| =|a b c|+|2x 2y 2z
X Yy < Xy Z X y Z
(by Property 5)
=0+0=0 (Using Property 3 and Property 4)

Property 6 If, to each element of any row or column of a determinant, the equimultiples
of corresponding elements of other row (or column) are added, then value of determinant
remains the same, i.e., the value of determinant remain same if we apply the operation
R, >R +kR orC, — C +kC.

Verification
a, a, a, a +ke, a, +kc, a;+kc,
Let =|b b, byl and A = by b, by )
G 6 G G ) G

where A is obtained by the operation R, — R, + kR, .

Here, we have multiplied the elements of the third row (R,) by a constant k and
added them to the corresponding elements of the first row (R)).

Symbolically, we write this operation as R, - R + kR,.
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DETERMINANTS 115

Now, again
a, a, a, ke, ke, ke
A =|b b, by|+| b b, by | (Using Property 5)
G G G G 6 G
=A+0 (since R, and R, are proportional)
Hence A=A,
Remarks

(i) If A, is the determinant obtained by applying R, — kR, or C, — kC, to the
determinant A, then A, = kA.

(ii) If more than one operation like R, = R, + kR is done in one step, care should be
taken to see that a row that is affected in one operation should not be used in
another operation. A similar remark applies to column operations.

a a+b a+b+c
Example 11 Prove that [2a 3a+2b 4a+3b+2c|=a’.
3a 6a+3b 10a+ 6b+ 3¢

Solution Applying operations R, - R, = 2R, and R, — R, — 3R, to the given
determinant A, we have

a+b a+b+c
a 2a +b
0 3a Ta + 3b

S

A=

Now applying R, — R, - 3R, , we get

a a+b a+b+c
A=10 a 2a +b
0 0 a
Expanding along C,, we obtain
a 2a+b
A=a +0+0
0 a

=a@-0)=a (@ =ad
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116 MATHEMATICS

Example 12 Without expanding, prove that

xX+y y+z z+«x

A= Z X y =0

1 1 1

Solution Applying R, — R, + R, to A, we get
x+y+z x+y+z x+y+z
A= z x y

1 1 1

Since the elements of R, and R, are proportional, A = 0.

Example 13 Evaluate

1 a bc
A=|1 b ca
1 ¢ ab
Solution Applying R, - R, - R, and R, = R, - R, we get
1 a bc
A=|0 b—a c(a-D>)
0 c—a b(a—c)

Taking factors (b — a) and (¢ — a) common from R, and R, respectively, we get

1 a bc
A=0b—-a)(c—a)|0 1 -c
01 -b

=(b-a) (c-a) [(- b+ c)] (Expanding along first column)
=@a-b)y(b-c)(c-a)

b+c a a
Example 14 Prove that | b c+a b |=4abc
c c a+b
b+c a a
SolutionLet A=| b c+a b
c c a+b
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DETERMINANTS 117
Applying R, - R -R,-R;to A, we get
0 -2¢ -2b
A=|b c+a b
c ¢ a+b
Expanding along R, we obtain

c+a b b c+a

b
A=0
C

—(—26)‘

+ (-2b) ‘

c a+b
=2c(ab+b*—bc)-2b(bc—-c?-ac)
=2abc+2ch?>-2bc*-2 b+ 2 bc*+ 2 abc
=4 abc

c

x X 1+x

Example 15 If x, y, z are different and A=|y y* 1+ y'|=0, then
z z 1+Z

show that 1 + xyz =0

Solution We have

x XX 1+x
A=y Y 1+y3
7 22 1+7°

x x* 1 |x X X
=y ¥ 1+y ¥ Y (Using Property 5)

2 2 3
z 0 1 |z ¢ z

1 x x° 1 x x°
= (—1)2 1y y2 +xyz|l y y2 (Using C,<>C, and then C, <> C))
1 z 72 1 z 72
1 x x

1y ¥ |(+xy2)
2

1 z z
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118 MATHEMATICS

1 X x°
= (1+xyz)|0 y—x y* —x* (Using R, >R -R, and R, - R-R))
0 z-x z°—x°
Taking out common factor (y —x) from R, and (z — x) from R, we get

2

1 x x
A= (1+xy2) y—x) (z—x)[0 1 y+x
0 1 z+x

= +xyz) (y = %) (z—x) (z—y) (on expanding along C))
Since A =0 and x, y, z are all different, i.e., x —y#0,y—-z#0, z—x#0, we get
1+xyz=0

Example 16 Show that

I+a 1 1

1 1+b 1 =abc(l+l+%+1J=abc+bc+ca+ab
11 1+c Q™

Solution Taking out factors a,b,c common from R, R, and R,, we get

1 1 1

— +1 _ —

a a a

1 1 1

—abc| — —+1 -—

LH.S. = b b b
1 - l+1

c c c

Applying R — R, + R, + R,, we have

1 1 1 1 1 1 1 1 1
I+—+—+— I+—+—+— I+—+—+—
a b c a b c a b c
1 1 1
:abc — —+1 —
A b b b
1 1 L
c c Cc
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DETERMINANTS 119

1 1 1
= abc 1+l+l+l 1 —+1 1
a b c)ib b b
i 1,
c ¢ c
Now applying C,— C,-C,C,— C,- C,, we get
1 0 0
A= abc 1+l+l+l 1 10
a b c)| b
1
— 01
c

abc[1+l+l+lj[l(l ~0)]

a b c¢

1 1 1
abc[l+—+—+—j =abc + bc + ca + ab = R.H.S.
a b ¢

Alternately try by applying C, — C, - C, and C, — C, - C,, then apply
C,=C =0l

EXERCISE 4.2

Using the property of determinants and without expanding in Exercises 1 to 7, prove

that:

a
b

Cc

[
N = =

7
8
9

w
[V BERUS I ()

b+c
5. |ct+a
a+b

x+a a—-b b-c c—a
y+b|=0 2. |[b-c c—a a-b|=0
z+c c—a a-b b-c
65 1 be a(b+c)
75[=0 4. |1 ca b(c+a) =0
86 1 ab c(a+b)
q+r y+z a p X

r+p z+x|=210b q y

p+q x+y c r z
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120 MATHEMATICS

0 a —-b —a*> ab ac
6. |—Fa 0 —|=0 7. | ba -b*> b |=4a’b*c?
b ¢ 0 ca ¢b —c?

By using properties of determinants, in Exercises 8 to 14, show that:

1 a a
8. () |l b b|=(a-b)(b-c)(c—a)

2
1 ¢ ¢

1 1 1
G) |a b cl|=(a-b)(b-c)(c—a)(a+b+c)

3 .3
a b c

X X yz

9. 1V Y X=@x-y)(y-2) (2-x) (xy +yz + z2x)
z 7 xy

x+4 2x  2x
10. () | 2x  x+4  2x [=(5x+4)(4-x)
2x  2x  x+4

y+k y y
G | vy y+k vy |=k(3y+k)
y y y+k

a-b-c 2a 2a
1. G| 26 b-c-a 2b |=(a+b+c)’
2c 2c c—a-b
x+y+2z X y
(i) z y+z+2x y =2(x+y+z)3
Z X z+x+2y
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DETERMINANTS 121

1 x x
12. 21 x=(1—x3)2
X X2
l+a*-b* 2ab —-2b
13| 2ab  1-d+b®  2a  |=(1+@+b)
2b —2a 1-a* -b*
a’+1 ab ac
14. | ab  b*+1  bc |=1+a” +b* +c*
ca ch P +1

Choose the correct answer in Exercises 15 and 16.
15. Let A be a square matrix of order 3 x 3, then | kAl is equal to

(A) klAl (B) k1Al (©) BIAI (D) 3kIAl
16. Which of the following is correct

(A) Determinant is a square matrix.

(B) Determinant is a number associated to a matrix.

(C) Determinant is a number associated to a square matrix.

(D) None of these

4.4 Area of a Triangle

In earlier classes, we have studied that the area of a triangle whose vertices are

. ) 1
(x, y)» (x,, ¥,) and (x,, y,), is given by the expression E[xl(yz—y3) +x, -y) +

x, (y,=y,)]. Now this expression can be written in the form of a determinant as

| x oy 1

= —|X R 1
A > Y, .. (1)

x, oy, 1

Remarks
(1) Since area is a positive quantity, we always take the absolute value of the
determinantin (1).
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